

Randomized trials with non-compliance

- Randomized field trials often encounter non-compliance with treatment assignments.
- An initial tension:
 - Intent-to-Treat analysis for the average effects of *treatment assignment*
 - Instrumental variables analysis for the complier average treatment effect (CATE)
- Two-Stage Least Squares is standard approach for estimating CATE.

Cluster-robust variance estimation (CRVE)

- Common approach to obtaining standard errors/hypothesis tests/confidence intervals for impact estimates.
- Account for dependence without imposing distributional assumptions.
 - Within-cluster dependence in cluster-randomized trials.
 - Site-level heterogeneity in multi-site trials (Abadie, Athey, Imbens, & Wooldridge, 2017).
- Conventional CRVE requires a large number of clusters.
- **Bias-reduced linearization** CRVE methods (Bell and McCaffrey, 2002) work well in small samples.
 - Weighted least squares linear regression (McCaffrey, Bell, & Botts, 2001)
 - Generalized estimating equations (McCaffrey & Bell, 2006)
 - Linear fixed effects models (Pustejovsky & Tipton, 2016)
 - But not for 2SLS

Aim

Develop bias-reduced linearization estimators for 2SLS estimators.

Outline

- Review bias-reduced linearization for OLS models
- Explain approach for 2SLS
- Some simulation results

Ordinary least squares

A linear regression model for data from J clusters:

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{eta} + \mathbf{e}_j$$

where $Var(\mathbf{e}_i) = ???$

The OLS estimator:

$$\hat{oldsymbol{eta}} = \mathbf{B}_{\mathbf{X}} \sum_{j} \mathbf{X}_{j}' \mathbf{y}_{j} \qquad ext{where} \qquad \mathbf{B}_{\mathbf{X}} = \left(\sum_{j} \mathbf{X}_{j}' \mathbf{X}_{j}
ight)^{-1}$$

Conventional CRVE (sandwich estimator) of $Var(\hat{\beta})$:

$$\mathbf{V}^{CR0} = \mathbf{B_X} \left(\sum_j \mathbf{X}_j' \mathbf{\hat{e}}_j \mathbf{\hat{e}}_j' \mathbf{X}_j
ight) \mathbf{B_X}$$

Bias-reduced linearization

- 1. Make a "working" assumption that $\mathrm{Var}(\mathbf{e}_j) = \mathbf{\Omega}_j$ for $j = 1, \dots, J$.
- 2. Add extra fillings to the sandwich estimator:

$$\mathbf{V}^{CR2} = \mathbf{B_X} \left(\sum_j \mathbf{X}_j' \mathbf{A}_j \hat{\mathbf{e}}_j \hat{\mathbf{e}}_j' \mathbf{A}_j' \mathbf{X}_j
ight) \mathbf{B_X}$$

where \mathbf{A}_{i} are chosen so that

$$\mathrm{E}\left(\mathbf{V}^{CR2}
ight)=\mathrm{Var}(\hat{oldsymbol{eta}})$$

under the working model.

• It turns out that this works *even when the working model is misspecified*.

Two-stage least squares

The model for cluster $j = 1, \dots, J$:

$$\mathbf{y}_j = \mathbf{Z}_j \boldsymbol{\delta} + \mathbf{u}_j \ \mathbf{Z}_j = \mathbf{X}_j \boldsymbol{\gamma} + \mathbf{v}_j$$

where

- \mathbf{Z}_j includes endogenous regressor (compliance indicator)
- \mathbf{X}_i includes the instrument (treatment assignment)

Two-stage least squares estimation

• First stage (appetizer):

$$\mathbf{Z}_j = \mathbf{X}_j \boldsymbol{\gamma} + \mathbf{v}_j$$

with fitted values

$$\mathbf{ ilde{Z}}_{j} = \mathbf{X}_{j} \hat{oldsymbol{\gamma}} = \mathbf{X}_{j} \mathbf{B}_{\mathbf{X}} \sum_{j} \mathbf{X}_{j}' \mathbf{Z}_{j}$$

• Second stage (main course):

$$\mathbf{y}_j = \mathbf{ ilde{Z}}_j oldsymbol{\delta} + \mathbf{ ilde{u}}_j$$

estimated as

$$\hat{oldsymbol{\delta}} = \mathbf{B}_{\mathbf{Z}} \sum_{j} \mathbf{ ilde{Z}}_{j}^{\prime} \mathbf{y}_{j} \qquad ext{where} \qquad \mathbf{B}_{\mathbf{Z}} = \left(\sum_{j} \mathbf{ ilde{Z}}_{j}^{\prime} \mathbf{ ilde{Z}}_{j}
ight)^{-1}$$

Bias-reduced linearization for 2SLS

• CRVE with adjustment matrices:

$$\mathbf{V}^{CR2} = \mathbf{B_Z} \left(\sum_j \mathbf{ ilde{Z}}_j' \mathbf{A}_j \mathbf{\hat{u}}_j \mathbf{\hat{u}}_j' \mathbf{ ilde{A}}_j' \mathbf{ ilde{Z}}_j
ight) \mathbf{B_Z}$$

where
$$\hat{\mathbf{u}}_j = \mathbf{y}_j - \mathbf{Z}_j \hat{\boldsymbol{\delta}}$$
.

• Proposal: calculate adjustment matrices \mathbf{A}_j based on the second stage only, for

$$\mathbf{y}_j = \mathbf{ ilde{Z}}_j oldsymbol{\delta} + \mathbf{ ilde{u}}_j,$$

under a working model for $\mathbf{\tilde{u}}_{j}$.

Single instrument IV

With a single-dimensional instrument, CATE is a ratio:

$$\delta = rac{eta}{\gamma} = rac{ ext{ITT effect}}{ ext{Compliance effect}} \qquad ext{and} \qquad \hat{\delta} = rac{\hat{eta}}{\hat{\gamma}}$$

Delta-method approximation to $Var(\hat{\delta})$:

$$ext{Var}(\hat{\delta}) pprox rac{1}{\gamma^2} \Big[ext{Var}(\hat{eta}) + \delta^2 ext{Var}(\hat{\gamma}) - 2\delta ext{Cov}(\hat{eta}, \hat{\gamma}) \Big]$$

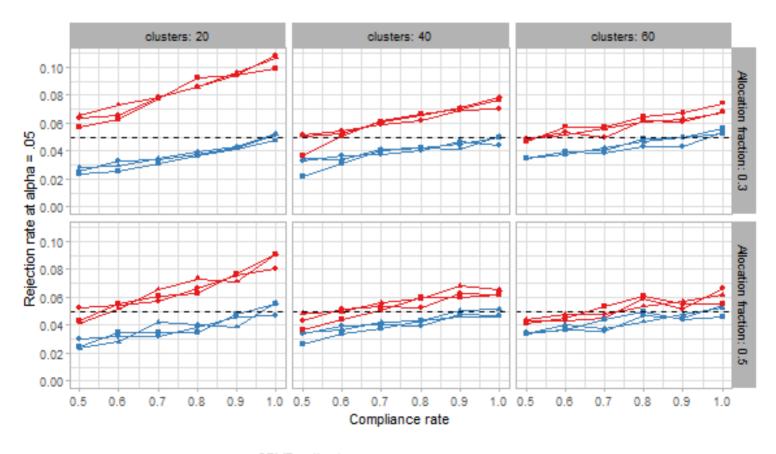
2SLS CRVE is equivalent to the delta-method estimator:

$$V(\hat{\delta})pprox rac{1}{\hat{\gamma}^2} \Big[V(\hat{eta}) + \hat{\delta}^2 V(\hat{\gamma}) - 2\hat{\delta}V(\hat{eta},\hat{\gamma})\Big]$$

Using the proposed adjustment matrices gives exactly unbiased estimates of each component in the delta-method approximation, under certain working models for $(\mathbf{u}_i, \mathbf{v}_i)$.

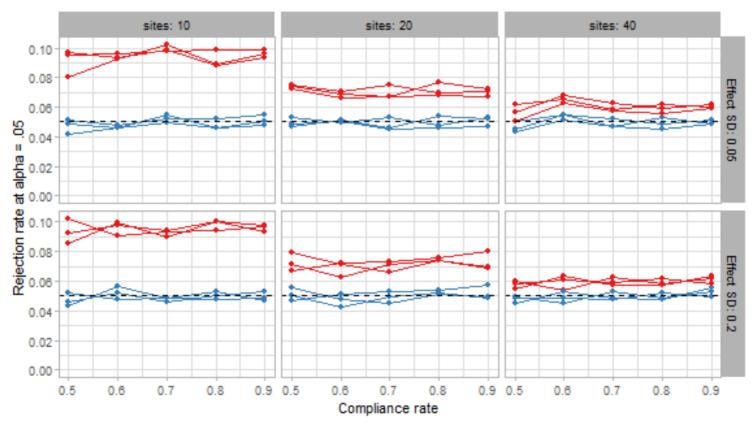
Simulations: Cluster-randomized trial

Cluster-level non-compliance



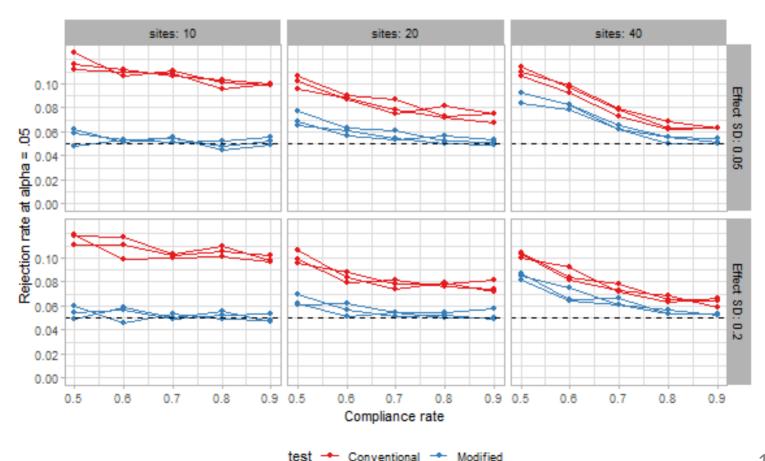
Simulations: Multi-site trial

Individual-level non-compliance, single instrument



Simulations: Multi-site trial

Individual-level non-compliance, site-specific instruments



Conclusions

- Methods implemented in clubSandwich package for R.
 - Works with AER::ivreg.
- Use small-sample adjusted CRVE for estimating CATE
 - In cluster-randomized trials
 - In multi-site trials with strong, single-instrument
- Future work needed on methods for weak instrument/many-instrument settings.

Contact

James E. Pustejovsky

The University of Texas at Austin

pusto@austin.utexas.edu

https://jepusto.com